RFLP markers linked to the root knot nematode resistance gene *Mi* in tomato

R. Klein-Lankhorst¹, P. Rietveld¹, B. Machiels¹, R. Verkerk¹, R. Weide¹, C. Gebhardt², M. Koornneef³ and P. Zabel^{1,*}

- ¹ Department of Molecular Biology, Agricultural University, Dreijenlaan 3, NL-6703 HA Wageningen, The Netherlands
- ² Max-Planck-Institute for Plant Breeding Research, W-5000 Cologne 30, FRG
- ³ Department of Genetics, Agricultural University, Dreijenlaan 2, NL-6703 HA Wageningen, The Netherlands

Received August 16, 1990; Accepted September 19, 1990 Communicated by F. Salamini

Summary. The Mi gene originating from the wild tomato species Lycopersicon peruvianum confers resistance to all major root knot nematodes (Meloidogyne spp.). This single dominant gene is located on chromosome 6 and is very closely linked to the acid phosphatase-1 (Aps-1) locus. Resistance to nematodes has been introgressed into various cultivars of the cultivated tomato (L. esculentum), in many cultivars along with the linked L. peruvianum Aps-11 allele. By using a pair of nearly isogenic lines differing in a small chromosomal region containing the Mi and Aps-1 loci, we have identified two RFLP markers, GP79 and H6A2c2, which are located in the introgressed L. peruvianum region. Analysis of a test panel of 51 L. esculentum genotypes of various origins indicated that GP79 is very tightly linked to the Mi gene and allows both homozygous and heterozygous nematode-resistant genotypes to be distinguished from susceptible genotypes, irrespective of their Aps-1 alleles. Marker H6A2c2 is linked to the Aps-1 locus and is capable of discriminating between the L. peruvianum Aps-1¹ allele and the L. esculentum Aps-1³ and Aps-1⁺ alleles. In combination, these RFLP markers may provide a powerful tool in breeding tomatoes for nematode resistance.

Key words: Tomato – Lycopersicon esculentum – Root knot nematode resistance – Meloidogyne – RFLP markers

Introduction

Infection with root knot nematodes (*Meloidogyne* spp.) is an important cause of tomato (*Lycopersicon esculentum*)

crop losses, especially in areas between latitudes of 35°S and 35°N (Baker et al. 1976; Mac Farlane et al. 1946). Infested plants show an aberrant development of the root system characterized by swellings (referred to as galls or knots), which inhibit the uptake of water and nutrients and interfere with the translocation of minerals and photosynthates (Wang and Bergeson 1974; Berlinger 1986; Hussey 1985). As a result, typical deficiency symptoms appear, such as wilting, stunted growth, and early senescence, which lead to severe yield decreases.

Although chemical control of nematodes is feasible, the adverse effects of using nematicides have made breeding for nematode-resistant tomato cultivars the method of choice in dealing with the nematode problem (Medina-Filho and Tanksley 1983). Resistance to root knot nematodes was found to be present in the wild species L. peruvianum (Bailey 1941), and resistant L. esculentum cultivars were obtained by introgressing the L. peruvianum resistance gene, designated Mi, into L. esculentum (Smith 1944; Watts 1947; Frazier and Dennett 1949). From the initial L. esculentum $\times L$. peruvianum cross, one single F_1 plant was used for further breeding by repeated backcrossing. Nowadays, all known nematode-resistant L. esculentum cultivars are derived from this single F_1 plant.

The *Mi* gene, which confers resistance to all major *Meloidogyne* spp. known to attack tomato, is located at position 44 on chromosome 6 (Gilbert 1958; Koornneef and Zabel 1990) and is very closely linked to the leaf color marker *yv* (yellow virescent) and to the acid phosphatase-1 (*Aps-1*) locus (Gilbert 1958; Medina-Filho 1980). The fortuitous linkage of the *Mi* locus with the *Aps-1* locus has been exploited in breeding tomatoes for nematode resistance, as the *L. peruvianum Aps-1* allele (*Aps-1*), which was carried along with the *Mi* gene in the original cross, is easily distinguishable from the *L. escu-*

^{*} To whom correspondence should be addressed

lentum Aps-1 alleles (Aps-1⁺ and Aps-1³) by isozyme staining (Fobes and Rick 1976). Thus far, the presence of the L. peruvianum Aps-1¹ allele in tomatoes has always been indicative of resistance to nematode infection. However, all nematode-resistant cultivars and breeding lines developed at the Hawaii Experimental Station (HES) from backcross material obtained by Watts (1947) possess the wild-type (Aps-1⁺) allele. Apparently, a crossover between the Aps-1 and Mi loci had occurred in the early generations of the HES breeding program (Medina-Filho and Stevens 1980). Therefore, selection for resistance in material derived from these HES lines depends on a nematode infection assay that is cumbersome and often less reliable.

The nature of the plant defence reaction against nematodes has remained elusive so far. Obviously, cloning of the Mi gene will be a prerequisite for gaining more insight into the mechanism of this plant-pathogen interaction. As for most plant genes conferring resistance to pathogens, no gene product of the Mi gene is known and, consequently, none of the standard molecular cloning techniques can be applied. A conceivable approach to clone the Mi gene would be to identify closely linked, flanking molecular markers and to subsequently clone all the sequences contained between them, using "reverse genetics" strategies (Herrmann et al. 1990; Orkin 1986; Rommens et al. 1989). This approach seems particularly attractive in plants in view of the relative ease with which restriction fragment length polymorphism (RFLP) markers closely linked to a target gene can be obtained by exploiting pairs of nearly isogenic lines (NILs), differing only in a small chromosomal segment containing the target gene (Young et al. 1988). In this paper we describe the application of this strategy to the isolation of two RFLP markers that are very tightly linked to the Mi locus and the Aps-1 locus, respectively.

Materials and methods

Plant materials

L. esculentum lines 83M7133 and 83M7138 form a pair of nearly isogenic lines differing only in the chromosome 6 region containing the Aps-1 and Mi loci. These lines are derived from 83M (De Ruiter, The Netherlands), which is a nematode-resistant L. esculentum line containing the L. peruvianum Aps-11 and Mi alleles. The backcross program involved in breeding this line consisted of at least 20 backcrosses of nematode-resistant cultivars obtained from the USA in the late 1950s with various breeding lines adapted to Dutch greenhouse conditions. The 83M line that segregated for Mi/Aps-1 was subsequently selfed for 11 generations under selection of heterozygous plants. Two homozygous plants, identified in a segregating F₁₀ line on the basis of their isozyme patterns, were selfed, resulting in the two NILs. The nematode-resistant line 83M7138 contains the L. peruvianum introgressed region derived from line 83M with the Aps-1¹ and Mi alleles. The nematode-sensitive line 83M7133 possesses a novel L. esculentum Aps-1 allele (Aps-13) and the L. esculentum Mi allele.

L. esculentum LA 1641 is a chromosome 6 substitution line in which the L. esculentum chromosome 6 has been replaced by chromosome 6 from L. pennellii LA716, except for the very distal end of the long arm encompassing RFLP marker TG193. This line has been developed from a L. esculentum × L. pennellii cross by Rick (1969). A detailed molecular and genetic characterization of this substitution line will be published elsewhere (R. Weide, R. Klein-Lankhorst, M. Koornneef and P. Zabel, in preparation).

L. pennellii LA 716, L. esculentum LA 1641, and the L. esculentum cultivars VFN8, Anahu (LA 655), and LA 656 (a genotype related to Anahu) were obtained from Dr. C. M. Rick, University of California, Davis/CA. Both resistant and sensitive L. esculentum cultivars and breeding lines were a gift from the Dutch seed companies Royal Sluis (Enkhuizen), De Ruiter Seeds (Bleiswijk), Nunhems Zaden (Haelen), and Rijk Zwaan (De Lier), as specified in Table 1. The varieties represent both F₁ hybrids and open-pollinated cultivars.

DNA methodology

All standard DNA methodologies were carried out according to Maniatis et al. (1982). Plant DNA was isolated from leaves as described by Murray and Thompson (1980). Labeling of DNA with α^{32} P-dATP was done using the "random primer" method according to Feinberg and Vogelstein (1984).

Hybridization of Southern blots containing tomato genomic DNA (3 µg/lane) with single- or low-copy clones from the genomic library was carried out at 65 °C in 15 ml 1 M NaCl, 1% SDS, 10% dextran sulfate, 50 mM TRIS-HCl, 0.1 mg/ml denatured salmon sperm DNA (final pH 7.5), using a roller-bottle hybridization oven (Highbaid, Teddington, UK). After hybridization, blots were rinsed in 0.1 × SSC at room temperature for 30 s and washed in 0.5 × SSC, 1% SDS at 65 °C, 2 × 30 min. Hybridization of tomato DNA with labeled potato RFLP markers was carried out at 55 °C under the same conditions as described above.

Construction and screening of the L. esculentum genomic library

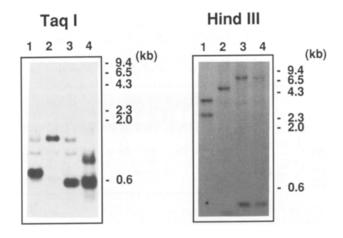
A genomic L. esculentum DNA library was constructed by ligating HindIII-digested total DNA (4 µg) from the nematode-resistant line 83M7138 into the dephosphorylated HindIII site of pUC 18 (1 µg). Clones were screened for the presence of repetitive sequences by hybridizing dot blots prepared from the library [using a Minifold apparatus (Schleicher and Schuell Inc., Dassel, Germany)] with labeled total DNA from L. esculentum 83M7138. Strongly hybridizing clones were omitted from further screening and the remaining clones were subjected to a second round of screening for repeats by hybridizing Southern blots of plasmid DNA. Insert DNA from clones showing no hybridization signal after overnight exposure was considered to represent either a single- or low-copy L. esculentum sequence. Inserts were isolated and used in pools of four to probe Southern blots containing DNA from L. esculentum 83M7138, 83M7133, LA1641, and L. pennelli LA716 digested with HindIII, EcoRI, EcoRV, HaeIII, BglII, DraI, TaqI, or XbaI. When a pool of inserts exhibited a chromosome 6-specific RFLP, as shown by a L. pennellii-type hybridization pattern in the digest of the chromosome 6 substitution line, individual inserts were rehybridized separately on Southern blots to identify the cloned L. esculentum fragment responsible for the polymorphism.

Acid phosphatase isozyme analysis

Leaf segments (ca. 1×2 cm) were frozen in liquid nitrogen, grounded using a Teflon pestle, and homogenized in 0.5 ml of ice-cold, freshly prepared extraction buffer [100 mM TRISHAc, 100 mM KAc, 10% (v/v) glycerol, 2 mM EDTA, 0.1 mM

PMSF, 0.25 M sodium ascorbate, 5 mM DTT, 125 mg/ml Polyclar AT (final pH 8.0)]. After centrifugation (13,000 g, 15 min), the supernatant was transferred to a new tube and stored at $-80\,^{\circ}\mathrm{C}$.

Forty microliters of the leaf extract was loaded on a nondenaturing polyacrylamide gel [7.5% (w/v) stacking gel, 12.5% (w/v) separating gel]. Electrophoresis was performed for 18 h at 70 V and 4°C in 50 mM TRIS, 380 mM glycine. The gel was subsequently equilibrated for 2×15 min with staining buffer (50 mM NaAc, 10 mM MgCl₂, final pH 5.5) and stained overnight for acid phosphatase activity at 30°C under gentle agitation in staining buffer containing 0.03% (w/v) β -naphtyl acid phosphate and 1 mg/ml Fast Black K salt (Medina-Filho and Tanksley 1983).


Results

Identification of RFLP markers for the Aps-1/Mi region

To identify RFLP markers for the Mi/Aps-1 region on chromosome 6, Southern blots of a pair of NILs differing for a small introgressed region around the Aps-1 and Mi loci were hybridized with single and low-copy genomic clones from tomato and potato. Clones mapping in this region were expected to exhibit a restriction fragment length polymorphism between the NILs, due to the difference in source of the target DNA. To confirm the chromosome 6 location of the putative Aps-1/Mi regionspecific RFLP markers, DNA from a L. esculentum chromosomal 6 substitution line and from L. pennellii were simultaneously probed. If a clone showing a polymorphism between the NILs maps in the Aps-1/Mi region, then it should exhibit a L. pennellii-specific hybridization pattern in the L. esculentum substitution line carrying chromosome 6 from L. pennellii.

Of the 250 tomato genomic clones thus tested, 21 could be assigned to chromosome 6. Only one clone, H6A2c2, also exhibited an RFLP between the pair of NILs (Fig. 1, left panel), apparently due to its location on the introgressed *L. peruvianum* chromosome 6 segment that carries the *Aps-1* and *Mi* loci. Assuming a random distribution of the genomic sequences among the library, this result suggests that the introgressed segment comprises only a very small proportion of the genome of resistant line 83M7138.

In addition to the tomato genomic clones, potato clones derived from chromosome 8 (Gebhardt et al. 1989; C. Gebhardt, E. Ritter, A. Barone, T. Debener, B. Walkemeier, V. Schachtschabel, H. Kaufmann, R. D. Thompson, M. Ganal, S. Tanksley and F. Salamini, in preparation), which is homeologous to tomato chromosome 6 (Bonierbale et al. 1988), were similarly tested for polymorphism between the pair of NILs and the chromosome 6 substitution line. Of the seven clones tested, six (CP12, GP79, GP89, GP136, GP164, GP202) revealed a *L. pennellii*-specific hybridization pattern for the chromosome 6 substitution line, indicating that these potato RFLP markers indeed map on chromosome 6 in tomato (results

Fig. 1. Identification of RFLP markers in the *Aps-1/Mi* region. Total DNA (3 μg) from the nematode-resistant line *L. esculentum* 83M7138 (*lanes 1*), the sensitive line 83M7133 (*lanes 2*), the chromosome 6-substitution line LA 1641 (*lanes 3*), and from *L. pennellii* LA716 (*lanes 4*) was digested with TaqI (*left panel*) and HindIII (*right panel*), separated on 1% agarose gels, transferred to Gene Screen Plus membranes, and hybridized with the RFLP markers H6A2c2 (*left*) and GP79 (*right*)

not shown). Among these potato clones, GP79 appeared to be of particular interest by virtue of exhibiting a polymorphism between the pair of NILs (Fig. 1, right panel).

Linkage of H6A2c2 with the Aps-1 locus

Although the use of the NILs had thus provided two RFLP markers that are located in the introgressed L. peruvianum segment carrying the Mi locus and the tightly linked Aps-1 locus, the mapping data have not provided as yet any information on their relative position and distance to these loci. For that purpose, a wide variety of nematode-resistant and -sensitive cultivars, including those in which the linkage between the Mi locus and the L. peruvianum Aps-1^t allele is broken (so-called Hawaiitype cultivars, derived from the HES lines), was subjected to acid phosphatase staining and Southern blot analysis. The APS-1 isozyme patterns of a representative set of 22 genotypes are shown in Fig. 2. Among the 51 genotypes tested, three Aps-1 alleles were distinguished: the L. peruvianum-specific Aps-1^t allele that is only present in nematode-resistant tomato lines and two alleles encoding allozymes with a higher mobility on polyacrylamide gels. One of these $(Aps-1^+)$ represents the standard L. esculentum (Marglobe) allele that is known from the literature (Fobes and Rick 1976). The other allele, which to our knowledge has not been described before, encodes an allozyme with a mobility slightly lower than Aps-1⁺ and is here referred to as $Aps-1^3$. [The designation $Aps-1^2$ has already been used to describe an Aps-1 allele present in

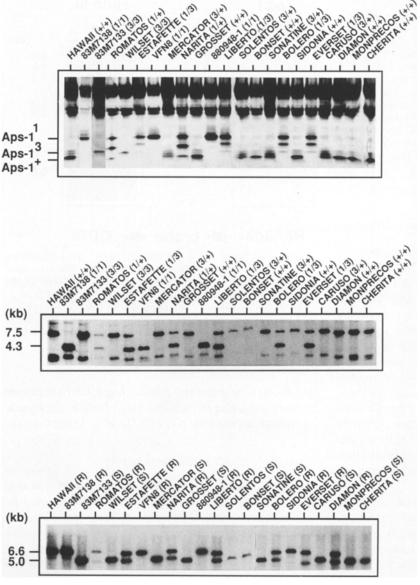


Fig. 2. APS-1 isozyme patterns of various nematode-resistant and -sensitive L. esculentum genotypes. Leaf extracts of various L. esculentum genotypes from the test panel (see Table 1) were prepared and analyzed on 12.5% acrylamide gels for acid phosphatase activity as described in "Materials and methods." The resulting APS-1 isozyme patterns of a representative set of 22 of the 51 tested genotypes are shown. The Aps-1 alleles of individual genotypes are indicated in parentheses: $+=Aps-1^+$, $1=Aps-1^1$, $3=Aps-1^3$. The genotype designated "Hawaii," first lane, corresponds to line 870482 (see Table 1)

Fig. 3. RFLP marker H6A2c2 discriminates the *L. peruvianum Aps-1*¹ allele from the *L. esculentum Aps-1*⁺ and *Aps-1*³ alleles. Southern blots of EcoRI-digested DNA from 51 *L. esculentum* genotypes were hybridized to RFLP marker H6A2c2. The hybridization patterns of the same set of 22 genotypes used in Fig. 2 are shown. The hybridizing fragments (4.3 kb and 7.5 kb) diagnostic for the different *Aps-1* alleles are indicated. *Aps-1* alleles of the individual genotypes are shown in parentheses: $+=Aps-1^+$, $1=Aps-1^1$, $3=Aps-1^3$

Fig. 4. RFLP marker GP79 discriminates nematode-resistant *L. esculentum* cultivars from sensitive cultivars. Southern blots of EcoRI-digested DNA from 51 *L. esculentum* genotypes were hybridized to RFLP marker GP79. The hybridization patterns of the same set of 22 genotypes used in Fig. 2 are shown. The response to nematode infection of the different genotypes is shown in parentheses: R=resistant, S=sensitive. (The migration of restriction fragments from cultivars Romatos, Solentos, and Bonset was slightly disturbed due to impurities in the DNA preparations)

the wild tomato species *L. chmielewskii* (Fobes and Rick 1976)]. Since tomatoes homozygous for this new allele are all sensitive to nematode infection, *Aps-1*³ is most likely to represent an *L. esculentum* allele.

According to their APS-1 isozyme patterns and their response to nematodes, the 51 tomato cultivars were divided into eight classes (see Table 1): Nematode-sensitive cultivars, being either $Aps-1^+/Aps-1^+$, $Aps-1^3/Aps-1^3$, or $Aps-1^3/Aps-1^+$; resistant cultivars homozygous or heterozygous for the L. peruvianum Aps-1 allele $(Aps-1^1/Aps-1^1, Aps-1^1/Aps-1^+,$ or $Aps-1^1/Aps-1^3$); and resistant cultivars of the Hawaii-type $(Aps-1^+/Aps-1^+)$ or $Aps-1^3/Aps-1^+$), in which the linkage between the L. peruvianum Aps-1 gene and the Mi gene has been lost by recombination.

To establish a possible correlation between the *Mi* gene, the different *Aps-1* alleles, and the RFLPs detected by clone H6A2c2 and GP79, EcoRI-digested DNA from each of the 51 *L. esculentum* genotypes was subjected to Southern blot analysis. Hybridization with clone H6A2c2 produced restriction patterns as shown in Fig. 3. Among the three major restriction fragments observed, two fragments of 4.3 and 7.5 kb, respectively, were diagnostic for the *Aps-1* alleles. All genotypes homozygous for the *L. peruvianum Aps-1* allele exhibited the 4.3-kb EcoRI fragment. On the other hand, genotypes homozygous for the *L. esculentum Aps-1* alleles, *Aps-1* or *Aps-1*³, only contained the 7.5-kb fragment, whereas heterozygous genotypes (*Aps-1* | *Aps-1* and *Aps-1* | *Aps-1* showed both the 4.3 and 7.5 kb fragment (Table 1). These

Table 1. Aps-1 alleles and restriction fragments detected by RFLP markers H6A2c2 and GP79 in 51 L. esculentum genotypes. A test panel consisting of 51 different nematode-resistant and -sensitive L. esculentum genotypes was surveyed by APS-1 isozyme staining and hybridization with the RFLP markers H6A2c2 and GP79. The Aps-1 alleles and the size (kb) of the hybridizing EcoRI fragments of the individual genotypes are given. The genotypes are grouped according to their reaction upon nematode infection and their Aps-1 alleles.

Name	Aps-1 alleles	H6A2c2 (EcoRI)	GP79 (EcoRI)	Source
Marglobe	+/+	7.5	5.0	5
Robin	+/+	7.5	5.0	1
Crisolita	+/+	7.5	5.0	1
Bornia	+/+	7.5	5.0	1
Grosset	+/+	7.5	5.0	1
Bonset	+/+	7.5	5.0	1
Monprecos	+/+	7.5	5.0	1
Cherita	+/+	7.5	5.0	2
Incas	+/+	7.5	5.0	3
CastleRock	+/+	7.5	5.0	3
Azteca	+/+	7.5	5.0	3
83M7133	3 /3	7.5	5.0	2
Wilset	3 /3	7.5	5.0	1
880948-2	3 /3	7.5	5.0	6
RZ43	3 /3	7.5	5.0	4
Concreto	3 /+	7.5	5.0	2
Mercator	3 /+	7.5	5.0	2
Solentos	3 /+	7.5	5.0	2
Sonatine	3 /+	7.5	5.0	2
Caruso	3 /+	7.5	5.0	2

Nematode-resistant L. esculentum genotypes

Name	Aps-1 alleles	H6A2c2 (EcoRI)	GP79 (EcoRI)	Source
83M7138	1/1	4.3	6.6	2
880948-1	1/1	4.3	6.6	6
VFN8	1/1	4.3	6.6	5
RZ1793	1/1	4.3	6.6	4
RZ1795	1/1	4.3	6.6	4
Parana	1/+	4.3/7.5	6.6/5.0	1
Romatos	1/+	4.3/7.5	6.6/4.5	2
Narita	1/+	4.3/7.5	6.6/5.0	1
Monix	1/+	4.3/7.5	6.6/5.0	3
Solido	1/+	4.3/7.5	6.6/5.0	3
Aratino	1/3	4.3/7.5	6.6/4.5	2
W1182	1/3	4.3/7.5	6.6/4.5	
Credito	1/3	4.3/7.5	6.6/5.0	2 2 2 2
Romada	1/3	4.3/7.5	6.6/5.0	2
Restino	1/3	4.3/7.5	6.6/4.5	2
Belcanto	1/3	4.3/7.5	6.6/4.5	2
Estafette	1/3	4.3/7.5	6.6/5.0	2
Liberto	1/3	4.3/7.5	6.6/5.0	
Bolero	1/3	4.3/7.5	6.6/5.0	2 2
Everest	1/3	4.3/7.5	6.6/4.5	1

Nematode-resistant L. esculentum genotypes, Hawaii-type

alleles	H6A2c2 (EcoRI)	GP79 (EcoRI)	Source
+/+	7.5	6.6	2
+/+	7.5	6.6/5.0	2
+/+	7.5	6.6	1
+/+	7.5	6.6/5.0	1
+/+	7.5	6.6	1
+/+	7.5	6.6/5.0	1
+/+	7.5	6.6	5
+/+	7.5	6.6	5
+/+	7.5	6.6/5.0	3
3 /+	7.5	6.6/5.0	1
3 /+	7.5	6.6/5.0	1
	+/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+	+/+ 7.5 +/+ 7.5 +/+ 7.5 +/+ 7.5 +/+ 7.5 +/+ 7.5 +/+ 7.5 +/+ 7.5 +/+ 7.5 +/+ 7.5	+/+ 7.5 6.6 +/+ 7.5 6.6/5.0 +/+ 7.5 6.6 +/+ 7.5 6.6 3/+ 7.5 6.6/5.0

1=Royal Sluis, 2=De Ruiter Seeds, 3=Nunhems Zaden, 4=Rijk Zwaan, 5=C. Rick, 6=own breeding program

results demonstrate that clone H6A2c2 is very tightly linked to the Aps-1 locus and is capable of distinguishing the L. peruvianum $Aps-1^{t}$ allele from the L. esculentum $Aps-1^{t}$ and $Aps-1^{3}$ alleles.

Linkage of GP79 with the Mi locus

A similar survey was conducted with the RFLP marker GP79 (Fig. 4 and Table 1). In this case, a strict correlation was found between the presence of a 6.6-kb EcoRI fragment and resistance to nematodes. All the nematoderesistant genotypes surveyed, including Hawaii-type lines $(Aps-1^+ \text{ or } Aps-1^3)$, were found to contain a diagnostic 6.6-kb EcoRI fragment. In old tomato cultivars such as VFN8 and Roma VFN, which are homozygous for Mi, this was the only fragment detected by GP79. Modern resistant cultivars, which are mostly F, hybrids, contained in addition to the 6.6-kb fragment either a 5.0-kb or 4.5-kb EcoRI fragment. Nematode-sensitive cultivars only exhibited a single 5.0-kb EcoRI fragment. In conclusion, these results demonstrate that clone GP79 is highly discriminatory and is capable of identifying nematode-resistant genotypes, irrespective of their Aps-1 phenotype.

To determine the genetic distance between H6A2c2, GP79, Aps-1, and the leaf color marker yv (yellow virescent), which is tightly linked to Aps-1, segregation for these four markers was analyzed in a population of 50 F_2 plants from a L. esculentum LA802 ($Aps-1^+/Aps-1^+$) $\times L$. esculentum 83M7138 ($Aps-1^1/Aps-1^1$) cross. LA802 is a nematode-sensitive line carrying the chromosome 6 markers yv, m2 (mottled), and c (potato leaf). The F_2 plants were analyzed by APS-1 isozyme staining and Southern blot analysis, using H6A2c2 and GP79 as probes (results not shown). No recombinants were found between the RFLP markers, yv and Aps-1. On the assumption that the chance of finding a recombinant in a

population of a certain size is determined by a Poisson distribution, the percentage of recombination between these markers was estimated to be less than 3%.

Discussion

In principle, RFLP markers closely associated with various economically important traits in tomato are easily identifiable with the aid of pairs of nearly isogenic lines, which differ only in a small introgressed chromosomal segment containing the gene of interest (Young et al. 1988; Sarfatti et al. 1989). With respect to the nematode resistance region on chromosome 6, we have thus been able to identify two RFLP markers that are located in the introgressed *L. peruvianum* segment carrying the nematode resistance gene *Mi*.

The HindIII genomic tomato library employed here provided a useful and apparently representative source of potential RFLP markers. Among the 250 clones tested, 21 (8.4%) were found to map on chromosome 6, which represents in size an "average" tomato chromosome among the 12 chromosomes constituting the haploid genome. In principle, the source of potential RFLP markers for linkage analysis in tomato is not limited to tomato itself. Clones derived from other members of the nightshade family (Solanaceae) are feasible as well. Using tomato clones as RFLP markers in pepper (Tanksley et al. 1988) and potato (Bonierbale et al. 1988), a high degree of linkage conservation was detected. Conversely, mapped potato clones (Gebhardt et al. 1989) should be supplementary to tomato markers and, in some cases, highly useful when located at or near a region that has been shown to carry an important trait in tomato. The potato clone GP79, which had been mapped already in a linkage group homeologous to chromosome 6 of tomato (C. Gebhardt, E. Ritter, A. Barone, T. Debener, B. Walkemeier, V. Schachtschabel, H. Kaufmann, R. Thompson, M. Ganal, S. Tanksley and F. Salamini, in preparation) but is not yet known to be linked to a nematode resistance locus in potato, provides a striking example in this respect. Its tight linkage to the nematode resistance locus in tomato, as demonstrated in this paper, may in turn provide a first clue as to the location of a root knot nematode resistance gene in wild Solanum species (see also Mendoza and Jatale 1985).

In tomato, GP79 is very tightly linked to the Mi gene and is capable of identifying both the $Aps-1^1$ -type as well as the Hawaii-type $(Aps-1^+)$ or $Aps-1^3$ nematode-resistant cultivars. Apparently, this RFLP marker is located at the Mi side of the Aps-1/Mi crossing-over point in the HES lines. In breeding programs involving cultivars derived from these lines, the Aps-1 locus is not a useful marker and selection for nematode resistance depends on a bioassay that is time-consuming and not always fool-

proof. Obviously, GP79 provides a powerful molecular marker allowing segregating populations to be screened for the nematode resistance trait at both the homozygous and heterozygous level. The RFLP marker H6A2c2 is not useful for that purpose, as it is located at the *Aps-1* side of the *Aps-1/Mi* crossing-over point in the HES lines.

The APS-1 isozyme staining of the test panel of 51 *L. esculentum* cultivars showed the existence of a second, hitherto unrecorded, *L. esculentum Aps-1* allele, which we refer to as *Aps-1*³. This *Aps-1* allele seems to be present mainly in tomato varieties used for greenhouse culture, such as Wilset, Sonatine, and Estafette (see Table 1).

Genetic linkage analysis revealed a close linkage between both RFLP markers, the Aps-1 locus and the yv locus. As no recombinants were recovered between any of these markers among 50 F₂ plants analyzed, no gene order could be established. The maximum map distance between any of these markers was estimated to be 3 cMorgans. It remains to be tested whether this close genetic linkage corresponds to a physical distance of approximately 1.5 Mbp that can be calculated for tomato, assuming a constant ratio between genetic distance and physical distance. The mere location of the Aps-1/Mi region near the centromere may significantly contribute to suppression of recombination and, consequently, to an underestimation of the physical distance (Loh et al. 1987). As recombination is also known to be suppressed in genotypes heterozygous for a chromosomal segment originating from a different species (Rick 1969), the chromosomal region habituated by Aps-1, Mi, GP79, and H6A2c2 in the nematode-resistant line 83M7138 is likely to be larger in terms of DNA base pairs than suggested by estimates based on genetic linkage data. Southern blot analysis of high-molecular-weight DNA separated by pulsed field gel electrophoresis (Van Daelen et al. 1989) using GP79 and H6A2c2 as probes did not show any common bands hybridizing in the 100-1,000 kb region (results not shown).

Studies are now in progress which aim at the construction of a long-range physical map of the *Mi* region using pulsed field gel electrophoresis and a tomato YAC library (R.A.I. van Daelen, in preparation).

Acknowledgements. This research was financially supported by The Netherlands Technology Foundation (STW) and was coordinated by the Foundation for Biological Research (BION). The authors thank Dr. C. Rick, Royal Sluis, De Ruiter Seeds, Nunhems Zaden, and R. Zwaan for providing various *L. esculentum* cultivars and P. van Druten for artwork.

Note added in proof. Recently, molecular and genetic evidence has been obtained indicating that the Aps-1³ allele was introgressed into tomato from *L. pimpinellifolium* along with the Cf2 gene conferring resistance to the pingus *Cladosporium fulvum*.

References

- Bailey DM (1941) The seedling test methode for rootknot nematode resistance. Proc Am Soc Hortic Sci 38: 573-575
- Baker KR, Shoemaker PB, Nelson LA (1976) Relationship of initial population densities of *Meloidogyne incognita* and *M. hapla* to yield of tomato. J Nematol 8:232-239
- Berlinger MJ (1986) Pests. In: Atherton JG, Rudich J (eds) The tomato crop. Chapman and Hall, London, pp 391–441
- Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095-1103
- Feinberg AP, Vogelstein B (1984) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 137:266-267
- Fobes JF, Rick CM (1976) Aps, Est, and Got phenotypes. TGC Rep 26:7-9
- Frazier WA, Dennett RK (1949) Isolation of Lycopersicon esculentum type tomato lines essentially homozygous resistant to root knot. Proc Am Soc Hortic Sci 54: 225-236
- Gebhardt C, Ritter E, Debener T, Schachtschabel U, Walkemeier B, Uhrig H, Salamini F (1989) RFLP analysis and linkage mapping in *Solanum tuberosum*. Theor Appl Genet 78:65-75
- Gilbert JC (1958) Some linkage studies with the Mi gene for resistance to root knot. TGC Rep 8:15-17
- Herrmann BG, Labeit S, Poustka A, King TR, Lehrach H (1990) Cloning of the T gene required in mesoderm formation in the mouse. Nature 343:617-622
- Hussey RS (1985) Host-parasite relationships and associated physiological changes. In: Sasser JN, Carter CC (eds) An advanced treatise on *Meloidogyne*, vol, 1. North Carolina State University Graphics, Aleigh/NC, pp 143–153
- Koornneef M, Zabel P (1990) A new look at old linkage data of chromosome 6. TGC Rep 40:17-19
- Loh WHT, Kut SA, Evans DA (1987) A novel strategy for the development of nematode-resistant tomatoes. In: Arntzen CJ, Ryan C (eds) Molecular strategies for crop protection. Alan R. Liss, New York, pp 367:373
- MacFarlane JS, Hartzler E, Frazier WA (1946) Breeding tomatoes for nematode resistance and for high vitamin C content in Hawaii. Proc Am Soc Hortic Sci 47:262-270
- Maniatis T, Fritsch E, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor/NY
- Medina-Filho HP (1980) Linkage of *Aps-1*, *Mi*, and other markers on chromosome 6. TGC Rep 30:26–28

- Medina-Filho HP, Stevens MA (1980) Tomato breeding for nematode resistance: survey of resistant varieties for horticultural characteristics and genotype of acid phosphatases. Acta Hortic 100: 282-392
- Medina-Filho HP, Tanksley SD (1983) Breeding for nematode resistance. In: Evans DA, Sharp WR, Ammirato PV (eds) Handbook of plant cell culture, vol 1. Techniques for propagation and breeding. MacMillan, New York, pp 904–923
- Mendoza HA, Jatala P (1985) Breeding potatoes for resistance to the root knot nematode *Meloidogyne* species. In: Sasser JN, Carter CC (eds) An advanced treatise on *Meloidogyne*, vol I. North Carolina State University Graphics, Raleigh/NC, pp 217-224
- Murray MG, Thompson WF (1980) Rapid isolation of highmolecular-weight plant DNA. Nucleic Acids Res 8:4321-4325
- Orkin SH (1986) Reverse genetics and human disease. Cell 47:845-850
- Rick CM (1969) Controlled introgression of chromosomes of Solanum pennellii into Lycopersicon esculentum: segregation and recombination. Genetics 62:753-768
- Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, Zsiga M, Buchwald M, Riordan JR, Tsui L, Collins FS (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059-1065
- Sarfatti M, Katan J, Fluhr R, Zamir D (1989) An RFLP marker in tomato linked to the *Fusarium oxysporum* resistance gene 12. Theor Appl Genet 78:755-759
- Smith PG (1944) Embryo culture of a tomato species hybrid. Proc Am Soc Hortic Sci 44:413-416
- Tanksley SD, Bernatzky R, Lapitan NL, Prince JP (1988) Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci USA 85:6419-6423
- Van Daelen RAJ, Jonkers JJ, Zabel P (1989) Preparation of megabase-sized tomato DNA and separation of large restriction fragments by field inversion gel electrophoresis (FIGE). Plant Mol Biol 12:341-352
- Wang ELH, Bergeson GB (1974) Biochemical changes in root exudate and xylem sap in tomato plants infected with *Meloidogyne incognita*. J Nematol 6:194-202
- Watts VM (1947) The use of Lycopersicon peruvianum as a source of nematode resistance in tomato. Proc Am Soc Hortic Sci 49:233-234
- Young ND, Zamir D, Ganal MW, Tanksley SD (1988) Use of isogenic lines and simultaneously probing to identify DNA markers tightly linked to the *Tm-2a* gene in tomato. Genetics 120: 579 – 585